Chemical Diversity in the Essential Oil of Wild Cymbopogon giganteus (Chiov.)

SAQIB MAJEED¹, J. HEMALATHA², M. VINUTHA³ AND K. J. THARA SARAWATHI⁴

1.2.8.4 Department of Microbiology and Biotechnology, Bangalore University, Bengaluru - 560 056

3 Department of Biotechnology and Genetics, Ramaiah College of Arts, Science and Commerce, Bengaluru - 560 054

e-Mail: saqibmajeed142@gmail.com

ABSTRACT

The wild *Cymbopogongi ganteus* (Chiov.) collected from Jnanabharathi campus, Bangalore University, Bangalore was subjected to hydro-distillation for extraction of its essential oil. GC-MS analysis was carried out to study the chemical composition of the essential oil. The yield of the essential oil obtained from hydro-distillation method was found to be 0.2 per cent v/w and a total of 50 compounds were identified. The dominant compounds were found to be Isocarveol (25.89%), trans-p-mentha-2,8-dienol (13.39 %), Limonene (9.66 %), 1,4-Methano phthalazine, 1, 4, 4a, 5, 6, 7, 8, 8 a-octahydro-9, 9-dimethyl-, $(1\alpha, 4\alpha, 4a\alpha, 8a\alpha)$ (8.30%), cis-p-mentha-2, 8-dien-1-ol (6.62 %), Carvone (4.40%) and Carveol (3.19%). These secondary metabolite compounds are known to possess potential bioactivities of medical significance.

Keywords: Cymbopogon giganteus, Essential oil, GC-MS analysis, Monoterpenoids, Sesquiterpenoids

THE genus Cymbopogon comprises about 140 species (Kumari et al., 2007) of which Cymbopogon giganteus (Chiov.) is one of the species that is known to be economically important for the production of essential oils. Essential oils are complex mixture of volatile secondary metabolites. The variation in the composition of essential oil depends upon environmental conditions and the methods used for extraction. Cymbopogongi ganteus (Chiov.) is a perennial grass that belongs to the polytypic genus Cymbopogon in the family Poaceae (Graminae) and the species is widely spread in the tropic and subtropic regions of Asia, Africa and America with a distribution ranging from hilly and savanna regions to deserts and xeric shrub lands (Rao, 1997). The plant has a rhizome-bearing stem that enables it to perennate (survive an annual unfavourable season) underground and can grow up to 6 to 9 feet (Letouzey, 1972). The Essential oil of Cymbopogon giganteus has vast commercial values in flavors, fragrances, cosmetics, perfumery, soaps, detergents, toiletry, tobacco products and pharmaceuticals (Ganjewala et al., 2009).

GC-MS analysis of the essential oil showed that, out of the different compounds formed, terpenoid sare

most abundant and are present as monoterpenes, sesquiterpenes and their derivatives like alcohols, esters, ketones and others. Terpenoids form a unique group in the sense of the range and diversity of compounds they represent. The structural type and their derivatives comprise thousands of compounds and form the vast groups in nature (Connolly and Hill, 1992). The presently studied essential oil of wild Cymbopogongi ganteus constituted variouster penoids that are produced from isoprene units through Mevalonate pathway. The characteristic odour of the essential oil of Cymbopogongi ganteus is due to its high content of monoterpenoid alcohols i.e., Isocarveol, trans-p-mentha-2, 8-dienol, cis-p-mentha-2, 8-dien-1-ol, Carveol etc. The trace constituents present in the oil are responsible for the characteristic olfactory note of the oil (Raina et al., 2003).

Investigation of the chemical composition of the essential oil from leaves, inflorescence and stem have been carried out. (Raina *et al.*, 2003). During the present investigation, the essential oil from wild *Cymbopogongi ganteus* was analysed by GC-MS and the finger print compounds present in the oil were recorded.

MATERIAL AND METHODS

Plant Collection

The plant sample for study was collected from Jnanabharathi campus, Bangalore University, Bengaluru, Karnataka. The site for plant collection was located at an elevation of 829 m and a latitude and longitude of 12°50'58.1342" N and 77°30'31.8008" E, respectively with an area of 4.452 sq. kilometres. Due to its elevation, it receives about 1200 mm of rain annually, with the wettest months being August, September and October. The temperature recorded on the day the sample was collected (*i.e.*, 11th January 2021) was 28 °C. The collected plant sample was subjected to Essential oil extraction and analysis.

Plant Identification

Isolation of Total Cellular DNA and Primer Designing for Barcode Loci Amplication: Fresh and young leaves of the wild plant were taken and subjected to total extraction of the cellular DNA using CTAB method. The corresponding gene sequences of the genus Cymbopogon were retrieved from NCBI Gen-Bank data domain for precisely designing the specific primers for the amplification of three barcoding loci, *i.e.*, rbcL, matK and ITS one and two spacers. PCR primer pairs were mapped out from the conserved regions using software primer 3.0 (version 0.4.0) (Bishoyi *et al.*, 2017).

Barcode Amplification, Sequencing and Validation and Data Analysis: Two chloroplast loci (rbcL, matK) and one nuclear DNA locus (ITS region) of the isolated DNA from the fresh young leaves were amplified using the primers that were designed. The PCR reaction mixture contained the template DNA, buffer, MgCl₂, DNTPS, designed primer and DNA polymerase. The PCR program that was set involved 35 cycles, each cycle starting from an initial stage of denaturation at 94 °C for 5 minutes followed by an annealing stage at 60 °C for one minute, extension stage at 72 °C for two minutes and final extension at 72 °C for 10 minutes. The PCR products were purified and sequenced (Bishoyi et al., 2017). Sanger sequencing of amplicons were carried out using BDT v 3.1 Cycle

sequencing kit on Abi 370xl Genetic Analyzer. Annotation softwares were used to annotate the sequenced data. Validation of the designed primers and sequenced data was done by repeating the experiment twice from the starting DNA isolation step to the sequencing step. The PCR products were also subjected to 1.6 per cent agarose gel for the visualization of the amplified products. The gel was pictured with a Gel Doc XR+(Biorad). Annotated counting barcode sequences were subjected to BLASTn (NCBI domain) for verification and were finally submitted to Gen Bank of NCBI. The DNA sequences were aligned automatically using the program CLUSTALW in MEGA 6.0 and constructed NJ derived phylogenetic tree.

Essential Oil Studies

Extraction of Essential Oil: The fresh plant materials collected from the experimental sites were washed under tap water followed by distilled water to remove the dust particles and dried at ambient temperature for two days in the laboratory. The dried materials were minced and subjected to hydro-distillation for three hours using Clevenger-type apparatus for the extraction of essential oil. The oil was dried over anhydrous sodium sulphate and stored in sealed vials under a refrigerator until analysis. The amount of essential oil concentration was calculated by using the formula given below.

Essential oil extration
$$\frac{\text{Amount of essential oil}}{\text{Amount of crop biomass}} \times 100$$

$$\frac{\text{Amount of crop biomass}}{\text{distilled (g)}}$$

Analysis of Essential Oil (GC-MS): GC-MS analysis of the essential oil was carried out on an Acquisition - General, Shimadzu GCMS, Model Number: QP2010Plus equipped with Electron Ionization using a capillary column Rtx-5MS 30 m length \times 0.25 μm thickness with an internal diameter of 0.25 mm. 0.1 μl sample was injected at the head of the column. The column temperature was initially programmed at 40 °C with a hold time of two minutes and then at a Ramp rate of 5 °C to 280 °C followed by 20 °C to 300 °C for two minutes. The injector and the interface

temperature was 250 $^{\circ}$ C and 280 $^{\circ}$ C, respectively. Helium was used as a carrier gas at a flow rate of 0.7 ml/min with a split ratio of 1:100.

Identification of Components: The identification of the constituent was assigned on the basis of comparison of the retention indices and their mass spectra with those given in the literature (Adams, 2001; Joulain and Konig, 1998). The interpretation of mass spectrum was conducted using the database of National Institute of Standards and Technology (NIST5).

RESULTS AND DISCUSSION

Plant Identification

The DNA barcoding studies of wild *Cymbopogongi* ganteus showed that out of three locus (rbcL, matK, and ITS spacers 1 and 2), only rbcL was amplified successfully and evolutionary analysis was conducted in Clustal Omega using Neighbour-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the

same units as those of the evolutionary distances used to infer the phylogenetic tree (Fig. 1) (Table 1). The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number of base substitutions per site. Phylogeny indicates that the studied plant sample is very closely grouped under clad of *Cymbopogon* sp. This result supported the study of NCBI BLAST leading to confirmation of the species as *Cymbopogongi ganteus* and the same was submitted in the NCBI Gen Bank under the accession number OK094429.

Fig. 1: Peaks observed in GC-MS analysis

Table 1

Details of the primers developed for the barcode amplification in *Cymbopogon* species

Primer name	Designed sequence (52 to 32)	Annealing temp (°C)	Annealing temp (°C)	Remarks
Ribulose-1,5-bisphospha	te carboxylase/oxygenase large subunit (rbc	L) gene		
CNRBCLF1CNRBCLR1	TGTTGGATTTAAAGCTGGTGTTCA TTTGCAAGCTGCTTTGAT	53.9	1323	Primer pair was validated
CNRBCLF2CNRBCLR2	GCAAGTGTTGGATTTAAAGCTGCA GCACTCCATTTGCAAGC	60.0	1336	Primer pair was taken for this study
Maturase K (matK) gene				
CNMTKF1CNMTKR1	TTTGATAAACCGAGAAATGCTTGC CTTTCCTTGATATCGAACAT	60.0	909	Primer pair was taken for this study
CNMTKF2CNMTKR2	ATGTATCATCATTTGATAAACCGA GAATGCCTTTCCTTGATATCGAACAT	58.5	910	Primer pair was validated
Internal transcribed space	cer 1, 5.8 S ribosomal RNA gene and interna	l transcribe	d spacer 2	
CFITSF1CFITSR1	CAAAACAGACCGCGAACGGGTGCTC GATGGGTCCTTAG	60.0	555	Primer pair was taken for this study
CFITSF2CFITSR2	GTAGGTGAACCTGCGGAAGGGTGCTT GATGGGTCCTTAG	59.0	595	Primer pair was validated

Characterization of Essential Oil

The essential oil from wild *Cymbopogongi ganteus* was qualitatively and quantitatively analysed. 0.2 ml of essential oil was obtained from 100 g of herbage with an yield of 0.2 per cent v/w. The colour of the essential oil was pale yellow. The essential oil was dominated by monoterpenoids with the presence of few sesquiterpenoids. The essential oil showed balanced content of hydrocarbons and oxygenated terpenes. A total of 52 compounds were identified from the essential oil by GC-MS analysis (Fig. 2) (Table 2).

Fig. 2: Phylogenetic tree constructed based on rbcL gene nucleotide sequences of *Cymbopogon* species

The major compounds present in the oil were limonene (9.66%), 1,4-methano phthalazine, 1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-9, 9-dimethyl-, $(1\alpha, 4\alpha, 4a\alpha,$ $8a\alpha$), (8.30 %), carvone (4.40 %) and a set of monoterpene alcohols: isocarveol (25.89 %), trans-p-mentha-2, 8-dienol (13.39%), cis-p-mentha-2, 8-dien-1-ol (6.62 %) and carveol (3.19 %). There were quantitative differences present in the essential oil suggesting that the environmental factors strongly influenced its chemical composition. It was noted that Isocarveol, a monoterpenoid alcohol in the essential oil contributed strongly to the aroma of the oil. The components of the essential oil due to which the plant gets its biological activity has vast commercial and medicinal values. The major constituent Isocarveol possesses antimicrobial (Janaina B. Seibert, 2019), trypanocidal and antiplasmodial activities, trans-p-mentha-2, 8-dienol possesses anti microbial activity (Bassole et al., 2014) and cis-p-mentha-2, 8-dien-1-ol possesses antimicrobial (Bassole et al., 2014), antibacterial and antioxidant activities (Carmen et al., 2021). Further more, Limonene is known to possess chemopreventive and

Table 2
Classification of the constituents of the essential oil from wild *Cymbopogongi ganteus*

Compound	Area %	RT (sec)	Molwt (g/mol)
Monoterpenoids	69.34		
Monoterpenoids without fur	nctional g	roups	
Limonene	9.66	12.532	136.23
Monoterpenoid alcohols			
trans-p-Mentha-2,8-dienol	13.39	15.487	152.23
cis-p-Mentha-2,8-dien-1-ol	6.62	15.876	152.23
Isocarveol	25.89	17.522	152.23
Carveol	3.19	17.786	152.23
L-Perillyl alcohol	0.36	20.570	152.23
Monoterpenoid aldehydes			
L-Perillaldehyde	0.73	19.788	150.22
α-Citral	0.16	19.653	152.23
α-Campholenal	0.29	22.986	152.23
p-Menth-1-en-9-al	0.56	17.991	152.23
Monoterpenoid ketones			
1,4-Dimethyl-3-tetra hydroacetophenone	0.27	13.828	152.23
Carvone	4.40	19.034	150.22
Monoterpenoid epoxides			
Limonene epoxide	0.68	15.717	150.23
cis-Carvone oxide	0.12	19.865	166.21
Monoterpenoid peroxides			
(2R,4R)-p-Mentha-[1(7),8] -diene, 2-hydroperoxide	0.26	22.004	168.23
(2S,4R)-p-Mentha-[1(7),8] -diene 2-hydroperoxide	1.61	22.574	168.23
Acyclic monoterpenoids			
Cosmene	0.19	11.672	134.22
α-Citral	0.16	19.653	152.23
Bicyclic Monoterpenoid			
6.β.Bicyclo[4.3.0]nonane, 5 β-iodomethyl-1β-iso propenyl-4α,5α-dimethyl-,	0.39	42.453	332.26
Irregular monoterpenoids			
2-Methylisoborneol	0.17	22.729	168.28
Methyl carveol	0.24	25.641	166.26
Sesquiterpenoids	3.32		

Compound	Area %	RT (sec)	Molwt (g/mol)	Compound	Area %	RT (sec)	Molw (g/mol
Sesquiterpenoids without fun	ctional	groups		Bicyclo [4.1.0] heptane,	0.14	20.026	166.26
Caryophyllene	0.89	27.565	204.36	-3-cyclopropyl, -7-hydroxy			
δ-Guaiene	0.19	41.349	204.36	methyl, (cis)			
Sesquiterpenoid ketone				5, 9, 9-Trimethyl-spiro [3.5] non-5-en-1-one	0.22	25.575	178.27
Longiverbenone	1.55	39.606	218.33				
Sesquiterpenoid alcohol				Fatty acid esters	0.27	12 270	158.24
Widdrol	0.28	42.656	222.37	Isoamyl butyrate	0.27	13.278	
Sesquiterpenoid epoxide				Isoamyloctanoate	0.77	24.282	214.34
Caryophyllene oxide	0.41	27.774	220.35	Phenylethyloctanoate	0.13	33.356	248.36
Steroid	0.49			Tricyclic compound	9.91		
Steroid with ketone and alcoh				1, 4-Methanophthalazine,	8.30	20.839	178.27
11α-Hydroxy-17α-methyl	0.49	40.012	318.45	1, 4, 4a, 5, 6, 7, 8, 8a-octahyd -9, 9-dimethyl-, $(1\alpha, 4\alpha, 4\alpha, 8\alpha)$			
testosterone	0.17	10.012	310.15	Tricyclo [20.8.0.0 (7,16)]	0.84	43.950	444.7
Hydrocarbons	16.65			triacontane, 1 (22), 7(16)	0.0 1	TJ.73U	 ./
Saturated Hydrocarbons				-diepoxy			
Tetracontane	0.11	44.948	563.1	Tricyclo [7.2.0.0 (2,6)]	0.77	41.538	204.36
Unsaturated Hydrocarbons	0.11		505.1	undecan-5-ol, 2,6,10,10			
Cosmene	0.19	11.672	134.22	-tetramethyl-			
3-Octadecyne	1.50	17.648	250.5	Tetracyclic compound	0.48		
Nonanal	0.16	14.741	142.23	Tetracyclo [6.3.2.0 (2,5).0 (1,8)] 0.48	28.972	220.35
2-Isopropylidene-	0.16	25.486	150.22	tridecan-9- ol 4, 4-dimethyl			
3-methylhexa-3, 5-dienal	0.11	23.400	130.22	ents storted outs VIII			
Cyclic Hydrocarbons				antitumour activity (Jessi			
4-Isopropenylcyclohexanone	0.54	16.325	138.21	Bioactivity of rest of the	•	•	nt in th
Melilotal	0.41	17.171	134.17	essential oil are reported i	n (Table	3).	
1,3-Bis-(2-cyclopropyl,	0.71						
	3.80			The volatile constituen	ts (mor	oternenc	oids ar
	3.80	21.509	258.4	The volatile constituen sesquiterpenoids) present	,	_	
	3.80			sesquiterpenoids) present	in the	wild <i>C</i> . g	igantei
2-methylcyclopropyl) -but-2-en-1-one	3.80 0.82			sesquiterpenoids) present interconvert through bios	in the synthetic	wild <i>C. g</i> pathway	riganter s by tl
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene,		21.509	258.4	sesquiterpenoids) present interconvert through bios action of certain enzyme	in the synthetics (Fig.	wild <i>C. g</i> pathway 3). These	riganter es by tl volati
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl		21.509	258.4	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product	in the synthetics (Fig. ced from	wild <i>C. g</i> pathway 3). These m isopres	riganter es by the volatione uni
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene,-	0.82	21.509 22.192	258.4 164.29	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are produc which are synthesised as l	in the synthetic s (Fig. ced from sopenter	wild <i>C. g</i> pathway 3). These n isopre nyl pyrop	riganter rs by the volati ne uni hospha
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl	0.82	21.509 22.192	258.4 164.29	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are produc which are synthesised as I (IPP) from Acetyl-CoA thr	in the synthetics (Fig. ced from sopenter ough Me	wild <i>C. g</i> pathway 3). These n isopremyl pyroperate	riganter ys by the volati ne uni hospha pathwa
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol,	0.82 0.54	21.509 22.192 12.301	258.4 164.29 134.22	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are produc which are synthesised as l	in the synthetic synthetic synthetic synthetic synthetic sopenter ough Method is open to the respective synthetic sy	wild C. g pathway 3). These n isopre- nyl pyrop evalonate rene unit	riganter rs by the volatione uni hospha pathwa DMAP
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans	0.82 0.54 0.35	21.509 22.192 12.301 14.295 20.143	258.4 164.29 134.22 132.2 154.25	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are produc which are synthesised as I (IPP) from Acetyl-CoA thr IPP is isomerized to the ot by an isomerase enzyme.	in the synthetics (Fig. seed from sopenter ough Meher isop	wild C. g pathway 3). These isopremyl pyropervalonate rene unit	riganter ys by the volatione union hospha pathwa DMAP condens
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans	0.82 0.54 0.35	21.509 22.192 12.301 14.295	258.4 164.29 134.22 132.2	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product which are synthesised as I (IPP) from Acetyl-CoA thr IPP is isomerized to the ot by an isomerase enzyme together in a head to tail	in the synthetics (Fig. seed from sopenter ough Meher isop These manner	wild <i>C. g</i> pathway 3). These n isopremyl pyropevalonate rene unit isomers or to form	iganter s by the volatione uni hospha pathwa DMAP condens Geran
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans [1,1-Bicyclopentyl]-2-one	0.82 0.54 0.35 0.36 4.28	21.509 22.192 12.301 14.295 20.143 18.301	258.4 164.29 134.22 132.2 154.25	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are produc which are synthesised as I (IPP) from Acetyl-CoA thr IPP is isomerized to the ot by an isomerase enzyme.	in the synthetics (Fig. seed from sopenter ough Me her isop These manner ceessive	wild <i>C. g</i> pathway 3). These n isopres nyl pyrop evalonate rene unit isomers or to form addition	rs by the volation of the united
2-methylcyclopropyl)	0.82 0.54 0.35 0.36 4.28	21.509 22.192 12.301 14.295 20.143 18.301	258.4 164.29 134.22 132.2 154.25	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product which are synthesised as I (IPP) from Acetyl-CoA through is isomerized to the ot by an isomerase enzyme together in a head to tail pyrophosphate (GPP). Such	in the synthetics (Fig. sopenter ough Meher isop manner ceessive pyropho	wild C. g pathway 3). These m isopremyl pyropevalonate rene unit isomers or to form addition sphate (F	rs by the volation of the united
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans [1,1-Bicyclopentyl]-2-one Cyclic Hydrocarbons with Futrans-Hydrindane 1,3-Benzodioxole,	0.82 0.54 0.35 0.36 4.28	21.509 22.192 12.301 14.295 20.143 18.301	258.4 164.29 134.22 132.2 154.25 152.23	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product which are synthesised as I (IPP) from Acetyl-CoA through IPP is isomerized to the other by an isomerase enzyme together in a head to tail pyrophosphate (GPP). Surger GPP produces Farnesyl Geranylgeranyl pyrophosphas	in the synthetics (Fig. seed from sopenter ough Me her isoper manner excessive pyropho thate (General excessive pyropho object).	wild <i>C. g</i> pathway 3). These in isopremyl pyropevalonate rene unit isomers or to form addition sphate (FGPP).	rs by the volation of the vola
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans [1,1-Bicyclopentyl]-2-one Cyclic Hydrocarbons with Futrans-Hydrindane	0.82 0.54 0.35 0.36 4.28 used Rin 0.29	21.509 22.192 12.301 14.295 20.143 18.301 gs 9.248	258.4 164.29 134.22 132.2 154.25 152.23 124.22	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product which are synthesised as I (IPP) from Acetyl-CoA through IPP is isomerized to the ot by an isomerase enzyme together in a head to tail pyrophosphate (GPP). Sur GPP produces Farnesyl Geranylgeranyl pyrophosphate (GPP) Geranylgeranyl pyrophosphate (GPP)	in the synthetics (Fig. seed from sopenter ough Moher isoperate manner excessive pyrophobate (GPP) serv	wild C. g e pathway 3). These m isopre- nyl pyrop- evalonate rene unit isomers of to form addition sphate (F GPP).	rs by the volation of unitable with the unitable
2-methylcyclopropyl) -but-2-en-1-one Bicyclo [2.2.2] oct-2-ene, 1,2,3,6-tetramethyl 1,4-Cyclohexadiene, - 3-ethenyl-1,2-dimethyl β, β-Dimethylstyrene Cyclohexanemethanol, 2-(2-propenyl)-, trans [1,1-Bicyclopentyl]-2-one Cyclic Hydrocarbons with Futrans-Hydrindane 1,3-Benzodioxole,	0.82 0.54 0.35 0.36 4.28 used Rin 0.29	21.509 22.192 12.301 14.295 20.143 18.301 gs 9.248	258.4 164.29 134.22 132.2 154.25 152.23 124.22	sesquiterpenoids) present interconvert through bios action of certain enzyme constituents are product which are synthesised as I (IPP) from Acetyl-CoA through IPP is isomerized to the other by an isomerase enzyme together in a head to tail pyrophosphate (GPP). Surger GPP produces Farnesyl Geranylgeranyl pyrophosphas	in the synthetic synthetics (Fig. seed from sopenter ough Me her isop These manner eccessive pyrophophate (GPP) serv 4). Ger	wild <i>C. g</i> a pathway 3). These m isopremyl pyropervalenate rene unit isomers or to form addition sphate (FGPP).	rs by the volation of the volation of the volation of the volume of the

 ${\it Table 3}$ Bioactivity profile for the components of the essential oil from wild {\it Cymbopogongiganteus}

Name of the Compound	Bioactivity	Reference		
Cosmene	Pheromone and semiochemical (insect attractant)	A M EI- Sayed et al., (2008).		
Limonene	Chemopreventive and antitumour	Jessica A Miller et al., (2013).		
Isoamylbutanoate	Aggregation pheromone of the brown spiny bug, Clavigrallatomentosicollis	Hilaire Kpongbe et al., (2019).		
4-Acetyl-1, 4-dimethyl-1- cyclohexene	Human metabolite and flavouring agent	Yannai (2004).		
Nonanal	Antifungal Metabolite observed in cancer metabolism	Ji-Hong Zhang et al., (2017).		
trans-p-Mentha -2, 8-dienol	Antimicrobial activity (plant metabolite found in spearmint oil)	Bassole I H N et al., (2014).		
Limonene epoxide	Anxiolytic and antioxidant	Antonia Amanda Cardoso de Almeida et al., (2014 Mar).		
cis-p-Mentha-2, 8- dien-1-ol	Plant metabolite with antimicrobial potential Antibacterial and antioxidant	Bassole I H N <i>et al.</i> , (2014). Carmen M.S. Ambrosio (2021).		
4-Isopropenyl cyclohexanone	Acaricidal and potential inhibitor of tumor cells affecting brain	Ji-Yeon Yang (2013).		
Melilotal	Antioxidant	Chia-Pei Liang et al., (2014).		
Isocarveol	Antimicrobial and acaricide Trypanocidal and antiplasmodial	Janaina B. Seibert (2019). Salome Kpoviessi <i>et al.</i> , <i>(</i> 2014).		
3-Octadecyne	Used in perfumery and cosmetics	Yingngam B et al., (2015).		
Carveol	Human metabolite of limonene, chemopreventive (prevents breast cancer) Vasorelaxant Antibacterial	Renata Evaristo Rodigues da Silva (2020). Aline Cristina Guimaraes <i>et al.</i> , (2019).		
Carvone	Spasmolytic activityAcaricide Antiplasmodic Anticancer, Insecticidal effect	Damiao Pergentino de Sousa <i>et al.</i> , (2015) Magna Galvao Peixoto <i>et al.</i> , (2015)		
α-Citral	Antioxidant Antimicrobial Anti-inflammatory and anticancer	Hafsia Bouzenna (2017) Aleksandra Zielinska (2018)		
L-Perillaldehyde	Antidepressant Fumigant Antioxidant	Ji-Xiao <i>et al</i> . (2019) Wei-Bin Ma <i>et al</i> . (2014) Hui Tian <i>et al</i> ., (2017)		
cis- Carvone oxide	Antimicrobial Plant growth regulator	Maria C Pellegrini <i>et al.</i> , (2017) Jacek Lyczko (2020)		
L-Perillyl alcohol	Vasorelaxant Chemopreventive and antiangiogenic	Ana Carolina Cardoso-Teixeira <i>et al.</i> , (2018), Chen TC <i>et al.</i> , (2015)		
Bicyclo[2.2.2] oct- 2-ene, 1,2,3,6- tetramethyl	Anticholinesterase and antiradical	Muhammad Ayaz et al., (2015)		
(2S,4R)-p-Mentha -[1(7),8]-diene 2-hydr	Trypanocidal coperoxide	Fumiyuki Kiuchi et al., (2002)		
2-Methylisoborneol	Cyanobacterial metabolite	Izaguirre and Taylor (2004).		
α-Campholenal	AntimicrobialAnalgesic	NaouelChaftaret al., (2015).		

Name of the Compound	Bioactivity	Reference	
Caryophyllene	Antiflammatory and anti-edematogenic Larvicidal Antioxidant	Oliveira-Tintino <i>et al.</i> , (2018). HammadUllah <i>et al.</i> , (2021)	
Caryophyllene oxide	AntioxidantAnticancer and analgesicAntimicrobial Antifungal	Eman H Reda <i>et al.</i> , (2021).	
Longiverbenone	Antifungal Fumigant and repellent properties	Abbas Khani et al., (2014)	
δ-Guaiene	Larvicidal Insecticidal Platelet activating factor inhibitor	Ephantus J Muturi <i>et al.</i> , (2019). Elânia L D Albuquerque (2013)	
Widdrol	Antifungal	Nunez et al., (2006)	
Tetracontane	Antidengue and antiviral	T Pratheebaet al., (2019)	

Fig. 3: Mevalonate pathway for biosynthesis of terpenoids

dehydrogenase (Singh Sangwan et al., 1993). Geraniol, in turn is produced from geranyl pyrophosphate with the removal of pyrophosphate molecule by the action of geraniol synthase. GPP is cyclized to limonene by the action of limonene synthase. Limonene is then converted by limonene 6-monooxygenase to Carveol, followed by oxidation by carveol dehydrogenase to Carvone. Also, limonene is converted to Perillyl alcohol by limonene 7-monooxygenase, which further gets oxidized to Perillyl aldehyde by perillyl alcohol dehydrogenase. In a similar manner, trans-p-mentha-2, 8-dienol can be biosynthesised from Limonene. Further the biosynthesis of limonene oxide and isocarveol proceeds from limonene via a two-step pathway. First, Limonene is converted to Limonene oxide by the

Fig. 4: Biosynthesis of monoterpenoids from the essential oil of wild *Cymbopogongiganteus*

action of limonene 1, 2-monooxygenase and later the epoxide ring of the limonene oxide breaks to form Isocarveol, the major compound present in the essential oil of wild *Cymbopogongi ganteus*.

GPP reacts with the nucleophilic IPP unit to yield FPP and served as a precursor to sesquiterpenoids (Fig. 5). FPP undergoes cyclisation *via* carbonium ions to form cyclic sesquiterpenoids. The course of cyclisation depends on the geometry of FPP (IL Finar, 1956). FPP is cyclized to β -Caryophyllene, a humulene type sesquiterpenoid, by the action of (-)- β -Caryophyllene synthase followed by conversion of β -Caryophyllene oxide. The biosynthesis of Widdrol and a-Guaiene proceeds *via* the action of Widdrol synthase and a-guaiene synthase, respectively.

Fig 5: Biosynthesis of sesquiterpenoids from the essential oil of *Cymbopogongiganteus*

The present study showed that the composition of the essential oil of *C. giganteus* collected from Jnanabharathi campus, Bangalore University was dominated by monoterpenoids bearing the menthane skeleton. The essential oil possessed many potential bioactivities of great medical significance. In addition, the essential oil possesses other activities of commercial importance and thus the demand for the wide variety of wild species is increasing with the growth in human needs, numbers and commercial trade (Lambert *et al.*, 1997).

REFERENCES

- Adams, R. P., 2001, Identification of essential oils by gas chromatography quadrupole mass spectroscopy. Carol Stream, USA: Allured Publishing Corporation.
- Albuquerque, E. L., Lima, J. K., Souza, F. H., Silva, I. M., Santos, A. A., Araujo, A. P., Blank, A. F., Lima, R. N., Alves, P. B. and Bacci, L., 2013, Insecticidal and repellence activity of the essential oil of pogostemon cablin against urban ant species. Acta Trop.
- ALMEIDA, A. A. C. D., CARVALHO, R. B. F. D., SILVA, O. A., SOUSA, D. P. D. AND FREITAS, R. M. D., 2014, Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test.
- Bassole, I. H., Lamien-Meda, A., Bayala, B., Obame, L. C., Ilboudo, A. J., Franz, C., Novak J, Nebie, R. C. and Dicko, M. H., 2014, Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination, Phytomedicine.

- BISHOYI, A. K., KAVAN, E. A., SHARMA, A., GEETHA, K. A., 2017, A report on identification of sequence polymorphism in barcode region of six commercially important Cymbopogon species, Molecular Biology Reports.
- Bouzenna, H., Hfaiedh, N., Giroux-Metges, M. A., Elfeki, A. and Talarmin, H., 2017, Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells,
- CARDOSO-TEIXEIRA, A. C., FERREIRA-DA-SILVA, F. W., PEIXOTO-NEVES, D., OLIVEIRA-ABREU, K., PEREIRA-GONCALVES, COELHO-DE-SOUZA, A. N., LEAL-CARDOSO, J. H., 2018, Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules.
- CARMEN, M. S. AMBROSIO, GLORIA, L. DIAZ-ARENAS, LEIDY, P. A. AGUDELO, ELENA STASHENKO, CARMEN, J., CONTRERAS-CASTILLO AND EDUARDO, M., DA GLORIA., 2021, Chemical composition and antibacterial and antioxidant activity of a citrus essential oil and its fraction.
- CONNOLY, J. D. AND HILL, R. A., 1992, Dictionary of terpenoids, Chapman and Hall, New York.
- EL-SAYED, A. M., BYERS, J. A., MANNING, L. M., JURGENS, A., MITCHELL, V. J. AND SUCKLING, D. M., 2008, Floral scent of Canada Thistle and its potential as a generic insect attractant.
- Finar, I. L., Organic chemistry, Volume 2: Stereo chemistry and the chemistry of natural products.
- Ganjewala, D., Ambika, K. and Khan, K. H., 2009, Ontogenic and developmental changes in essential oil content and compositions in Cymbopogon flexuosus cultivars. In: Prasad BN, Lazer Mathew, editor. Recent Advance in Biotechnology, New Delhi, India: Excel India Publishers, 82 92.
- Guimaraes, A. C., 2019, Molecules. antibacterial activity of terpenes and terpenoids present in Essential Oils.
- IZAGUIRRE, G. AND TAYLOR, W. D. (2004), A guide to geosmin and MIB-producing cyanobacteria in the United States.

- Joulain, D. and Konig, W. A., 1998, The atlas of spectral data of sesquiterpene hydrocarbons, E. B.-Verlag, Hamburg, Germany.
- Khani, A. and Heydarian, M., 2014, Fumigant and repellent properties of sesquiterpene rich essential oil from *Teucrium polium* sub sp. *capitatum* (L.). *Asian Pacific Journal of Tropical Medicine*.
- Kpongbe, H., Van Den Berg, J., Khamis, F., Tamo, M. and Torto, B., 2019, Isopentyl butanoate: Aggregation pheromone of the brown spiny bug, *Clavigralla tomentosi collis* (Hemiptera: Coreidae) and Kairomone for the egg *Parasitoid Gryon* sp. (Hymenoptera: Scelionidae).
- Kumari, J., Verma, V., Shahi, A. K., Qazi, G. N., Balyan, H. S., 2007, Development of simple sequence repeat markers in Cymbopogon species. *Planta Medica*, **73** (3):262.
- Lambert, J., Srivastava, J. and Vietmeyer, N., 1997, Medicinal plants: Rescuing a global heritage. World Bank, Washington. *World Bank Technical Paper nr.*, 355.
- Letouzey, R., 1972, Manuel debotanique forestiered'Afrique tropi-cale, Centre technique recherche forestiere tropicale, 2B.
- LIANG, C. P., WANG, M., SIMON, J. E. AND HO, C. T., 2014, Antioxidant activity of plant extracts on the inhibition of citral off-odour formation.
- Lyczko, J., Piotrowski, K., Kolasa, K., Galek, R. and Szummy, A., 2020, Menthapiperita, L. Micropropagation and the potential influence of plant growth regulators on volatile organic compound composition.
- MILLER, J. A., LANG, J. E., LEY, M., NAGLE, R., HSU, C. H., THOMPSON, P. A., CORDOVA, C., WAER, A., CHOW, H. H. S., Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer, *Cancer Prev Research* (Phila).
- MUTURI, E. J., DOLL, K., BERHOW, M., FLO-WEILER, L. B., ROONEY, A. P., 2019, Honey suckle essential oil as a potential source of eco friendly larvicides for mosquito control. *Pest Manage*. *Sci.* **75**: 2043 2048.
- NUNEZ, Y. O., SALABARRIA, I. S., COLLADO, I. G. and HERNANDEZ-GALAN, R., 2006, The antifungal activity of

- widdrol and its biotransformation by Colletotrichum gloeosporioides (penz.) Penz. & Sacc. and Botrytis cinerea Pers.: *Fr. J Agric Food Chem*.
- OLIVEIRA-TINTINO, C. D. M., PESSOA, R. T., FERNANDES M. N. M., ALCANTARA, I. S., DA SILVA BAF, DE OLIVEIRA, M. R. C., MARTINS, A. O. B. P. B., DA SILVA, M. D. S., TINTINO, S. R., RODRIGUES, F. F. G., DA COSTA, J. G. M., DE LIMA, S. G., KERNTOPF, M. R., DA SILVA, T. G. AND DE MENEZES, I. R. A., 2018, Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St. Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models, Phytomedicine.
- PEIXOTO, M. G., COSTA-JUNIOR, L. M., BLANK, A. F., LIMA ADA, S., MENEZES, T. S., SANTOS DDE, A., ALVES, P. B., CAVALCANTI, S. C., BACCI, L. AND ARRIGONI-BLANK MDE, F., 2015, Acaricidal activity of essential oils from Lippia alba genotypes and its major components carvone, limonene and citral against Rhipicephalus microplus.
- Pellegrini, M. C., Alonso-Salces, R. M., Umpierrez M. L., Rossini, C. and Fuselli, S. R., 2017, Chemical composition, antimicrobial activity and mode of action of essential oils against Paenibacillus larvae, Etiological Agent of American Foulbrood on Apismellifera.
- Pratheeba, T., Taranath, V., Sai Gopal and Natarajan, D., 2019, Antidengue potential of leaf extracts of Pavetta tomentosa and Tarenna asiatica (Rubiaceae) against dengue virus and its vector Aedesaegypti (Diptera: Culicidae). Heliyon.
- RAINA, K., SRIVASTAVA, S. K., AGGARWAL, K. K., SYAMASUNDAR, K. V. AND KHANUJA, S. P. S., 2003, Essential oil composition of Cymbopogonmartinii from different places in India.
- RAO, B. L., 1997, Scope for development of new cultivars of cymbopogons as a source of Terpene Chemicals (In: S.S. Handa & M. K. Kaul (Eds), Supplement to Cultivation and Utilization of Aromatic Plants), National Institute of Science and Communication, New Delhi, India, pp.: 71.
- REDA, E. H., SHAKOUR, Z. T. A., EL-HALAWANY, A. M., EL-KASHOURY, E. A., SHAMS, K. A., MOHAMED T. A., SALEH, I., ELSHAMY, A. I., ATIA, M. A. M., EL-BEIH, A. A., ABDEL-

The Mysore Journal of Agricultural Sciences

- AZIM, N. S., EL-SEEDI, H. R. AND HEGAZY, M. F., 2021, Comparative study on the essential oils from five wild Egyptian Centaurea Species: Effective extraction techniques, Antimicrobial Activity and *in-silico* Analyses. Antibiotics (Basel).
- Seibert, J. B., Viegas, J. S. R., Almeida, T. C., Amparo T. R., Rodrigues, I. V., Lanza, J. S., Frezard, F. J. G., Soares, R. D. O. A., Teixeira, L. F. M., De Souza, G. H. B., Vieira, P. M. A., Barichello, J. M. and Dos Santos, O. D. H., 2019, Nano structured systems improve the antimicrobial potential of the essential oil from Cymbopogon densiflorus leaves, *Journal of Natural products*.
- SINGHSANGWAN, N., SANGWAN, R. S., LUTHRA, R., THAKUR, R. S., 1993. Geraniol dehydrogenase A determinant of essential oil quality in lemongrass. *Planta Med.*, **59**: 168-170.
- Sousa, D. P. D., Mesquita, R. F., Ribeiro, L. A. D. A. and Lima, J. T. D., 2015, Spasmolytic activity of carvone and limonene enantiomers.
- Ullah, H., Minno, A. D., Santarcangelo, C., Khan H. and Daglia, M., 2021, Improvement of oxidative stress and mitochondrial dysfunction by Caryophyllene: A focus on the nervous system.
- YANG, J. Y. AND LEE, H. S., 2013, Changes in acaricidal potency by introducing functional radicals and an acaricidal constituent isolated from Schizonepeta tenuifolia.
- Yannai, Shmuel, Dictionary of food compounds with CD-ROM: Additives, flavors and ingredients. Boca Raton: Chapman & Hall/CRC, 2004.

- YINGNGAM, B. AND BRANTNER, A. H., 2015, Factorial design of essential oil extraction from Fagraeafragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications.
- ZHANG, J. H., SUN, H. L., CHEN, S. Y., ZENG, L. AND WANG, T. T., 2017, Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium.
- ZIELINSKA, A., MARTINS-GOMES, C., NUNO, FERREIRA, R., AMELIA, SILVA, M., NOWAK, I. AND ELIANA, SOUTO, B., 2018, Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer.

(Received: October 2021 Accepted: November 2021)