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ABSTRACT

The study reported here is based on the research conducted in Gauribidanur taluk of

Chikkaballapura district of Karnataka State using a combination of remotely sensed

data in the optical region of the electromagnetic spectrum (EMS) using the data from

European space agency (ESA)'s Sentinel-2B Multispectral instrument (MSI) and

synthetic aperture radar (SAR) data from ESA's Sentinel-1A satellite. Datasets

comprising of multi-band, multi-polarization and multi-temporal covering kharif and

rabi seasons of the year 2022-23 were used in the study. Data reduction using principal

component analysis (PCA) and digital spatial data analysis using Random forest (RF)

algorithm were carried out. Different combination of polarizations viz., Parallel

polarization (VV), Cross polarization (VH) and VH/VV were used for information

extraction from SAR data. Spectral reflectance (signatures), Spectral-temporal profiles

of VV and VH polarizations and normalized difference vegetation index (NDVI) were

used to identify the crops and associated cover types. Reference data (ground truth),

collected twice during April 14-17, 2023 and May 2-5, 2023 was used to train the RF

algorithm and for evaluation of classification accuracy. Digital image classification of

single date (April 22, 2023) MSI (optical) and multi-polarization SAR data of the same

day did not give satisfactory results. However, the multi-date, multi-polarized SAR

data fused with optical datasets permitted better identification of crop types and their

area estimation in the month of September 2022 during kharif season.
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IN India the major crop growing season is during
June to September (kharif) when the monsoon is

also active and cloud cover prevents acquiring
remotely sensed data from satellite platforms in the
visible and infrared portion of the EMS. It is to
overcome this constraint, many researchers made use
of the SAR data for crop acreage estimation and crop
monitoring. The physical basis of using active
microwave sensors for studying vegetation canopies
is the ‘water cloud model’ (WCM) wherein the canopy
is modelled as a cloud of identical, randomly oriented
scatterers, namely the leaves and branches (Attema
and Ulaby, 1978). These authors attributed the
backscattering coefficient from plant canopies as a

function of i) volumetric moisture content of soil,
ii) volumetric moisture content of vegetation and
iii) plant height. Many researchers reported additional
information from microwave remote sensing of
croplands in terms of crop growth stages, vigour, yield
potential, etc in addition to its all-weather capability.
The unique sensitivity of radar waves to crop canopy
structure, size, orientation, dielectric constant and
roughness gives complementary information to that
of optical sensors (Pemalatha & Nageswara Rao,
1994; Patel et al., 1995; Chakraborty et al., 2002 and
Kumar et al., 2013). As the crop goes through its
growth stages the structure of vegetation undergoes
changes resulting in changes in the dielectric constant
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and surface roughness. The most important aspect for
identifying different crops is through capturing these
temporal changes. (Dave et al., 2019; Tian et al., 2021
and Poonam et al., 2022).

Research shows that the availability of multi-
frequency, multi-temporal, multi-polarization datasets
gives better discrimination of crops and improved
classification accuracies (Das et al., 2021). Combined
with optical data sets, having the complementary
information, it is possible to give accurate crop yield
predictions (Mcnairn et al., 2009 and Verma et al.,
2019). The availability of SAR data from satellites
like ESA’s Sentinel-1, Canadian RADARSAT, India’s
RISAT- 1 & 2 has expanded the scope of using SAR
technology for agricultural applications. Similar
studies assume importance in the context of
opportunities opening up for researchers to access and
analyse the data from the near-future NASA–ISRO
Synthetic Aperture Radar (NISAR) satellite mission
with better sensor characteristics in dual frequency
(L- and S- bands) mode.

In the current study an attempt was made to i) develop
backscatter signatures of various crop cover types in
the study area, ii) demonstrate the use of multi-
polarization and multi-date SAR data for crop
identification and area estimation and iii) integrate
multi-date optical reflectance data with SAR
backscatter to achieve better information extraction
from a multi-cropping agroecosystem.

Fig.1: Gauribidanur taluk located in Chikkaballapura district
of Karnataka

MATERIAL AND METHODS

Study Area

The study was conducted in Gauribidanur taluk of
Chikkaballapura district, Karnataka state (Fig. 1). The
taluk headquarter Gauribidanur located at 13.61°N,
77.52°E. It has an average elevation of 694 metres
above MSL. The economy of Gauribidanur is
primarily agrarian with agriculture as the main
occupation of majority of the population. The climate
and availability of appropriate land and water
resources support the cultivation of various crops in
two major crop seasons namely kharif (June to mid-
October) and rabi season (November to mid-
February). Major crops grown in kharif season are
maize, ragi, paddy and vegetables while the rabi
season crops are ragi and maize. The study area also

European Union’s ESA- Copernicus programme. Sentinel 1A C-band SAR, pre-processed (Thermal noise removed,
Radiometric calibration, Terrain correction), Polarization: VV and VH,
Spatial Resolution: 10m Central Frequency: 5.4 Ghz (C-
band) Temporal Resolution: 12 days

European Union/ESA/Copernicus programme Harmonized Sentinel-2B Multispectral Instrument (MSI), Level-2A,
Spatial Resolution 10m in Blue, Green, Red, NIR bands, 20m in Red-
Edge 1,2,3; Near IR; SWIR, Temporal Resolution: 5 days

World Resources Institute Google Land Use/Land Cover (LULC) with a spatial resolution of 10 metre.

KGIS website -KSRSAC Administrative Boundaries from Vector (.shp Files)

TABLE 1
Data sources and data products used in the study

Data Sources Data Products Used

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.



212

T
he

 M
ys

or
e 

Jo
ur

na
l o

f A
gr

ic
ul

tu
ra

l S
ci

en
ce

s

has mulberry, horticulture crops, perennial tree cover
types and forest areas.

Spatial Data Used

Spatial data used for the study was from different
sources (Table 1). The Google Earth Engine (GEE), a
cloud-based geospatial analysis platform developed
by Google, having various built-in tools and functions,
was used in dataset preparation, processing, analysis
and visualization of spatial data.

Ground Truth Data

QField, an open-source mobile app, designed for field
mapping and ground truth collection was used to
collect ground truth (reference) data. The
configuration of the application was done using
Quantum Geographic Information System (QGIS)
desktop application. Ground truth was collected from
50 locations during April 14 - 17, 2023 and May 2 - 5,
2023. Additional 50 locations were inferred through
visual image interpretation of false colour composites
(FCCs). The sites chosen had fairly large fields of
different crops at least one-hectare (ha) size, so that
they are easy to locate on the ground. This data was
used for training the RF algorithm and estimating the
accuracy of crop classification.

Preparation of Datasets

The following combination of data sets were prepared:
viz., a) Single-date multi-band FCC of optical dataset
using Sentinel-2B MSI acquired on April 22, 2023,
b) Single-date multi-polarization composite using
Sentinel-1A SAR data of the same day (April 22,
2023), c) Temporal SAR composites of rabi season
(November-April, 2022-23) and kharif season (June-
October, 2022) and d) Fused (Optical + SAR) data of
September, 2022. The single-date multi-band FCC of
optical dataset was prepared using Sentinel-2A MSI
spectral bands Blue (490nm), Green (560nm), Red
(665nm), NIR (842nm) of 10 metre spatial resolution,
Short Wave Infrared-1 (1610nm), Short Wave
Infrared-2 (2190nm), Vegetation Red Edge-1 (705nm),
Vegetation Red Edge-2 (740nm), Vegetation Red
Edge-3 (783nm), Vegetation Red Edge-4 (865nm) of
spatial resolution 20m. The following indices were

calculated using the above optical data sets: i)
Normalized Difference Vegetation Index (NDVI) that
responds to pigment composition, growth stages,
green biomass and type of plant species, NDVI =
(NIR-Red) / (NIR+Red), ii) Bare Soil Index (BSI)
which is related to the extent of bare soil and areas
without any vegetation cover., BSI = [(Red+SWIR) -
(NIR+Blue)] / [(Red+SWIR) + (NIR+Blue)].

The procedure for selection of ‘green pixels’ and
minimization of ‘cloud pixels’ in the MSI data was as
per the details given in the Sentinel-2 User Handbook
(ESA, 2015). It broadly involves atmospheric
correction, threshold on blue reflectance for opaque
clouds detection, detection of sub-pixel level cirrus
clouds, snow index calculation, etc.

Though multi polarization composites of SAR data
from Sentinel-1A satellite acquired on April 22, 2023
were available for VV, VH and VH/VV band ratio,
we have used only VH polarized data as suggested by
several authors (Karjalainen et al., 2008; Jiao et al.,
2011; Liu et al., 2013; Wiseman et al., 2014; Selvaraj
et al., 2022 and Li & Wang, 2018). Cross-polarized
backscatter is sensitive to crop structure within the
total canopy volume, crop growth stages and preferred
for identifying vegetation / crop types and for
capturing variations between different crop types. In
the early stages of the plant growth, surface scattering
occurs from the interaction of the radar signal with
the sparse canopy, stem and the soil surface. Hence,
parallel polarized images tend to be brighter and show
high mean backscatter values when compared with
the cross-polarized images (Haldar et al., 2012 and
Cable et al., 2014). So, we used VH polarization to
prepare multi-temporal composites. For rabi season
VH polarization data was acquired on November
2022, January 2023 and April 2023. For kharif season,
data acquired during June 2022, August 2022 and
October 2022 were used in preparing the time
composited FCCs.

Preparation of Training Dataset and Identification
of Crops Grown in kharif Season 2022

FCC images of kharif season Sentinel-2B MSI data
(optical) were imported into the map window in GEE

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.
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and the samples were selected for which crop types
had to be identified. As the field visit and ground truth
could not be conducted during kharif season (June–
September, 2022), we resorted to a learning exercise
using the MSI (optical) data acquired in the rabi
season (April-May, 2023). This involved basic image
interpretation involving tone, texture, field patterns,
size, shape etc. of the crops, generating the spectral
signatures of major crops grown in rabi season
(Fig. 2), their temporal-spectral profiles of NDVI
(Fig. 3) and the ground truth collected in rabi season.
The experience thus gained was used to infer the crop
classes of unknown points (crop types) of the kharif
2022.

the red, NIR and SWIR bands. As revealed by the
Euclidian Distance (ED) values between these three
crops, their separability was not as expected. However,
the NDVI profiles of these crops were different,
enabling their identification (Fig. 3).

Optical and SAR Data Fusion

Data fusion was carried out after data reduction using
Principal Component Analysis (PCA), a technique
used for dimensionality reduction, available in GEE.
The dataset consisting of eleven data layers, out of
which eight from MSI (blue, green, red, red-edge, NIR,
SWIR, NDVI, BSI) and three of SAR (viz., VV, VH
and VV/VH polarizations) was flattened into a 2D
array, where each row represents a pixel and each
column represents a different layer. The resultant
image had new bands representing the components
that are orthogonal and ordered based on the amount
of variance they explain in the original data. The first
three principal components that typically represent
the most important patterns and variations in the fused
data were used to prepare FCC for subsequent
classification. Noise reduction, particularly speckle
inherent in the SAR imagery was accomplished using
Refined Lee Speckle filter through Java Scripting in
the GEE. Further data reduction was carried out by
masking non-cropped areas using the ESA’s World
Land Cover Product 2020. This has reduced the
amount of data to be processed, thus improving
computational efficiency and classification
performance (Phan et al., 2020).

Data Normalization, Crop Classification and Area
Estimation

As mentioned earlier entire data processing,
normalization and classification were performed in
GEE environment. As the data came from different
sources and the parameters of spectral bands and
indices derived from them have different scale and
ranges, the values of all parameters were rescaled
between 0 and 1. This technique is termed as min-
max scaling normalization (Singh and Singh, 2020).
Digital image classification was performed using the
RF algorithm because it was reported to give
acceptable accuracy of crop classification using SAR

It was found that the spectral reflectance of the crop
lands meant for paddy cultivation was much less than
dry fallow lands. The reflectance curves from the three
major crops viz., banana, maize and mulberry were
typical of a plant leaf but having subtle variations in

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.

Fig. 2: Spectral reflectance (signatures) of major crops in the
study area during March to April 2023

Fig. 3: NDVI time series for crops in the study area during
May 2022 to April 2023.
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data. The RF applies a set of decision trees to improve
prediction accuracy (Breiman, 2001 and Nhemaphuki
et al., 2017).  Feature importance and number of trees
required for the RF model were calculated. Hyper-
parameter-tuning, an experimental trial-and-error
model was used to optimize the RF algorithm in terms
of the number of decision trees required for the GEE’s
inbuilt-function to give better accuracy and
classification. The number of trees thus selected for
RF algorithm was 20. The sequence of steps followed
is illustrated in Fig. 4.

About 50 per cent of ground truth data was used for
training the model and 50 per cent of samples kept as
test samples for validation. Post classification
accuracy assessment was performed and accuracy
parameters viz., producer’s accuracy, user’s accuracy,
overall accuracy and Cohen’s Kappa coefficient were
generated. Area under each crop class was estimated
using the relevant built-in function of GEE. Digital
outputs from RF algorithm were generated with
appropriate colour codes and legend given to crops.
The non-cropped area layer showing built-up, forest,
barren lands and water bodies was added to the final
output.

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.

RESULTS AND DISCUSSION

Temporal Backscatter Profiles of Crops

The changes in backscattering coefficient, expressed
in decibels (dB), as a function of time observed with
cross-polarized (VH) SAR from major crop types are
presented in Fig. 5. It is seen clearly that the kharif
sown paddy had a peak backscatter in the months of
August -September (maximum greenness period)
followed by gradual drop in the backscatter during
October-November indicating its harvest. The low-
level peaks and troughs exhibited by paddy crop after
November could be due to minor changes in the soil
moisture and roughness associated with growth of
weeds. The backscatter profile of mulberry represents
the pruning and regrowth.

Fig. 5: Backscatter profiles of VH polarization for major crops
in the study area during June 2022 to May 2023Fig. 4: Sequence of steps involved in crop classification and

area estimation

Ground Truth

Training
Samples

Test
Samples








Datasets

Performance evaluation
of the RF algorithm

Training of RF algorithm

Area
Estimation

Classified
Outputs

Normalization of Spectral Bands







 

Fig. 6 : Backscatter profiles of VV polarization for Banana,
Paddy, Forest, Tree-clad area, Coconut, Maize, Mulberry
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Maize 11 2 1 0 0 0.79

Mulberry 1 5 1 0 1 0.63

Banana 1 3 5 1 1 0.45

Paddy 1 1 1 4 0 0.57

Fallow 0 0 0 1 9 0.90

User’s Accuracy 0.79 0.45 0.63 0.67 0.82 0.69

TABLE 5

Confusion matrix for classification of Sentinel-1A SAR multi-temporal composite kharif season
(June-October)

Overall Accuracy: 69%      Kappa Coefficient: 0.56

Paddy

Predicted Observed

Crop Types Maize Mulberry Banana Fallow Producer’s Accuracy

Maize 16 2 4 0 0.73

Mulberry 4 4 1 1 0.44

Banana 0 1 10 0 0.91

Fallow 1 0 0 8 0.88

User’s Accuracy 0.76 0.57 0.67 0.88 0.72

TABLE 3

Confusion matrix for classification of optical data
(Sentinel 2B MSI)-single date (22-04-2023) with 10

spectral bands and two indices

Overall Accuracy: 72%      Kappa Co-Efficient: 0.67

Predicted Observed

Crop Types Maize Mulberry Banana
Fallow
Land

Producer’s
Accuracy

MSI-single date (22-04-2023) 94 0.92

SAR-single date (22-04-2023) 97 0.96

SAR multi-temporal composite 95 0.93
kharif season (June-October)

SAR multi-temporal composite 97 0.96
rabi (November -April)

Fused data (SAR and Optical) 95 0.93

TABLE 2

Accuracy assessment at the training stage of the
RF algorithm

Dataset used
Accuracy

obtained (%)
Kappa

Coefficient

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.

Maize 16 2 3 0 0.76
Mulberry 1 1 2 0 0.25
Banana 3 4 10 0 0.58
Fallow 0 0 0 8 1.00
User’s Accuracy 0.80 0.14 0.67 1.00 0.70

TABLe 4

Confusion matrix for classification of SAR single
date (22-04-2023) multiple polarizations (VV, VH,

and VH/VV) data

Overall Accuracy: 70%      Kappa Coefficient: 0.58

Predicted Observed

Crop Types Maize Mulberry Banana Fallow
Producer’s
Accuracy

Surprisingly the Banana VH profile also showed a
rhythm in backscatter similar to mulberry though it is
a long duration crop with green biomass much more
than mulberry due to volume scattering and wind
affecting the broad-leaved canopy. The maize VH
profile evidently showed a deep trough in August
indicating harvest of kharif season crop followed by
a gradual rise and fall of the profile during the latter
months indicating the presence of the same crop in
rabi season as well. The changes in backscatter in
VV polarization over time during 2022-23 (Fig. 6)
have clearly revealed the nature of crops grown in
the study area, though the VV backscatter values were
found to be higher (-3 to -13 dB) than that of VH
profiles of the same crops (-12 to -21dB).
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Assessment of Performance of the RF Algorithm

Assessment of performance of the RF algorithm at
the training stage was carried out for different datasets
and the accuracies are presented in Table 2. The

overall post-classification accuracy obtained with
the RF algorithm was assessed as per Congalton
and Green (1999) wherein a confusion matrix was
created to evaluate and understand the performance
of the classifier.

Maize 10 1 1 0 0 0.83
Mulberry 1 6 1 0 0 0.75
Banana 1 2 8 1 1 0.62
Paddy 1 0 1 5 0 0.71
Fallow 0 0 0 1 9 0.9
User’s Accuracy 0.76 0.67 0.73 0.71 0.9 0.76

TABLE 6

Confusion matrix for classification of Sentinel-1A SAR multi-temporal composite of rabi (November - April)

Paddy

Predicted Observed

Crop Types Maize Mulberry Banana Fallow Producer’s Accuracy

Overall Accuracy: 76%      Kappa Coefficient: 0.73

Maize 13 1 0 0 0 0.93

Mulberry 1 6 0 0 1 0.75

Banana 1 2 6 1 1 0.55

Paddy 1 0 1 5 0 0.71

Fallow 0 0 0 0 10 1.00

User’s Accuracy 0.81 0.67 0.86 0.83 0.83 0.80

TABLE 7

 Confusion matrix for classification of fused data (SAR and Optical)

Paddy

Predicted Observed

Crop Types Maize Mulberry Banana Fallow Producer’s Accuracy

Overall Accuracy: 80%      Kappa Coefficient: 0.74

Fig. 7: Crop classification map generated using fused data (SAR+OPTICAL) for September 2022.

Mysore J. Agric. Sci., 57 (4) : 210-218  (2023) S. P. RAGHAVENDRA et al.



217

T
he

 M
ys

or
e 

Jo
ur

na
l o

f A
gr

ic
ul

tu
ra

l S
ci

en
ce

s

Confusion matrix for classification of single date
(22-04-2023) optical data (MSI) given in Table 3
showed the overall accuracy was 72 per cent at Kappa
coefficient of 0.67 indicating that the single date
optical data was not adequate for accurate
identification of the crop types. However, the
producer’s accuracies of maize and fallow-lands
were better than the overall accuracy, indicating
the probability of better estimation of their areas.
Confusion matrix for classification of single date
(April 22, 2023) multi-polarization SAR data
(Table 4) also showed that the overall accuracy was
not satisfactory. Confusion matrix generated with
multi-temporal SAR data in the kharif (Table 5) and
that of rabi season (Table 6) were also not encouraging
as revealed by the overall accuracies and
corresponding Kappa coefficients. The confusion
matrix generated with SAR data fused with optical
data (Table 7), however gave encouraging results with
an overall accuracy of 80 per cent at Kappa 0.74. The
digital crop map obtained with fused dataset is shown
Fig. 7. The accuracy assessment, Kappa coefficient
and crop area estimated with these data sets are
summarized in the Table 8. The crop area estimates
obtained from the single-date SAR and MSI data sets
showed large variations. Although kharif SAR dataset
yielded low accuracy of 69 per cent in its
classification, this was the only source to get
information as that optical dataset had major portion
of study area under cloud cover.

Though the area estimates of major crop cover types
were generated using remotely sensed data, their
validation could not be done due to lack of reliable
crop area statistics from the District Statistical Office.
There were large number of pixels misclassified using
SAR data, due to small fragmented fields which are
below the resolving power of the sensor. Large size
of training and validation datasets would have
improved the learning skills of the RF algorithm, thus
enhancing the accuracy of classification and area
estimation.

The study clearly showed that by integrating the
optical data (NDVI and BSI) with SAR (multi-date
and multiple polarizations), identifying the major
crops and their area estimation can be done. The
choice of RF algorithm performed well with multi-
temporal composite compared to single date
composites. Further studies on data fusion techniques
and appropriate choice of data acquisition may
enhance the classification accuracy and thus area
estimates of multiple crops.

Acknowledgement: The authors would like to thank
to Dr. D. K. Prabhuraj, Director, Karnataka State
Remote Sensing Applications Centre (KSRSAC),
Bengaluru for providing digital image processing
facilities, guidance and encouragement for conducting
the research. The first author would like to offer
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